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TECHNICAL MEMORANDUM 1255

" EQUATTONS OF MOTION OF A ROCKET*
By P. R. Gantmacher and L. M. ILevin

The equations of motlon of a rocket are given in general form;
a rocket is defined as an apparatus with a liquid or powder rocket
motor.

1, THEOREM OF MOMENTUM AND THEOREM OF MOMENTS

In considering the motion of the rocket, at each instant of time
only the state of those material particles which at that instant are
within the control surface passing through the exterior surface of
the body of the rocket and the exit section of the nozzle shall be
included.

In order to obtain the equations of motion of the rocket, the
following procedure is used. An arbitrary bubt fixed instant of time
ls considered. A fictltious solid body is denoted by S with
mass m, which would be obtained if the rocket at the instant %
solidified and ceased glving off particles. The solid body S will
not be homogeneous; in some of its parts, it will have the densilty
of a metal and in other parts the density of & gas, and so forth.

It shall be assumed that the fictitious solid body S is invari-
ably fixed to the body of the rocket and from the Instant t onwards
(instant of solidification) moves together with the rocket. The
momentum of the body S shall be denoted by Q.

The system I consisting of all the material particles that
at the Instent t entered the compositlion of the rocket shall also
be considered. At the ingtant + +the system I colncides with the
rocket, but at the succeeding instants certain of the particles of
the system X wlll be outside the rocket. The system & and the
solld body S have a constant mass equal to the mass of the rocket
at the ingtant of time +. The momentum of the system ¥ wrelative

*"0Ob Urawvnenlakh Dvizhenia Rakety." Prikladnaya Matematika 1
Mekhanika, Vol. XTI, No., 3, 1947, pp. 301 - 3lz.
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.to an immovable (more accurately Galilean) system of ccordinate axes
will be denoted by K. Iet F = dK/ﬁt' be the principal vector of
the extermal forces acting at the instant + on the rocket (and
therefore on the system I ).

Compare dK/dt and dQ/dt. The motion of each of the particles
of the system 3 shall be considered as compounded. A particle
moves relative to S (that is, relative to the body of the rocket)
but the solid body S 1is transported as a whole. For the absolute
relative and transport velocities, the notation vy, vy, and vg
shall be used. Similarly for the acceleratlons, the notation wg,
Wy, and we 18 used. The Coriolis accelsration of the particle

shall be denoted by J.

It is noted that v, 1s equal to zero for the particles of
the bodyl and for the particles of the powder, whereas Wy is equal
to zero for the particles of the body and those particles of the
powder, which at the given ingtant, do not lie on the combustion
surface, Then?

oK 248 E
3% = miy = o - J +) mip (1.1)

where J =)' 'mJj 1s the principal vector of the Coriolis forces
and

498 - S (a)

The relative velocity of the particle at the instant
tl =+t + dt 1s denoted by vy,.. For the elementary change in

lIn the body are included all fixed particles of the rocket,

2Tn the following discussion, the subscript 1 to denote magni-
tudes relative to the particles will, for simplification, be ommitted;
for example, Vg; and m; will be written as v, and m, res-
pectively.
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velocity &v, (relative to the body of the rocket)d,
B8Vyp = V1p = ¥y = Wpdb, hence

Jmidt = vy, - Jmvy (1.2)
The momentum relative to the body of the rocket at the instant
of the particles of the gas at that instant in the rocket is denoted

by K*¥ and the momentum relative to the body of the rocket of the
particles of the gas4 in the rocket at instant "t Dby Kl . Now

SKr=K1 - K°

vy, = KX (1.3)
E::mvlr K% + kpdt

where kpdt is the momentum (in the relative motion) of those par-
ticles of the gas, which in the time interval dt passed through the
exit section of the nozzle; Xk, 1is the momentum relative to the body
of the rocket of the mass of gas passing per second through the
section of the nozzle or, as used herein, the momentum rate per
second relative to the body of the rocket; OSKTY is the elementary
change of the relative momentum of the gas occupying a fixed volume
(within the control surface).

The vector k,, has the dimensions of a force.

The force ki is called the equilibrant of the reaction forces
or simply the reaction force,® If L= - dm/at is the mass flow

SHere and in the following discussions, the symbol & denotes the
differential (elementary change) of the vector relative to the body
of the rocket. The elementary change relative to the initial system
of axes (fixed) is denoted by d.

4For a rocket with liquid reaction engine, the vector K is
the momentum of the particles of gas in the combustion chamber and
nozzle and the particles of the liguid moving in the tanks and the
pipes supplying Tuel to the combustion chamber.

5In the equivalent reactive force there are often included

certain external forces; these will be considered more in detail in
section 2,
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per second and u (the average at the exlt section), the velocity of
flow of the gas relative to the nozzle® ky. = pu. From equations
(1.2) and (L.3), there is obtained :

dKY
Zﬁwr = ky + S (1.4)

Substitution on the right side of equation (1.1) for 3 'mw.,
of the expression from equation (1.4) and F for dK/dt yields
T
aQ _ g 5KE

This equation expresses the momentum theorem for the solidified
rocket, that is, for the solid body S.

The kinetic moments of the system X and the body S are now
considered.

The notation A, the kinetic moment of the system I ,
and I of the body S in the absolute motion, that is, in the
motion relative to the fixed system of the coordinate axes, are
introduced. The pole relative to which the kinetic moment is taken
is denoted by a subscript; thus, for example, L. is the kinetic
moment of the body S relative to its center of inertia C and A el
ig the kinetlic moment of the system relative to its center of
insrtia Cj.,

Together with the absolute motion, the motion relative to axes
passing through the p01nt C end moving forward together with it
must be considered.’ The magnitudes referring to this motion shall
be denoted by a prime.

Similarly in considering the motion relative to axes passing
through C1 (the center of inertia of the system I ) and having
a forward motion the corresponding magnitudes will be denoted by
g double prime.

61f the rocket has several nozzles, k, = ZLiui’ where pi
ig the gas flow of the 1 th nozzle and uj is the mean velocity
at the exit section of this nozzle. In the following dlscussion,
a rocket with a single nozzle 1s considered; this assumption does
not affect the generality of the results,

TThe origin of this system of coordinate axes C is not dis-
placed relative to the body of the rocket.
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Applying the theorem of the moment of momentum relative to the
center of inertia to the system I, there 1s obtained for the

"Instant of time  t
" A
ahA,;

where Gcl is the principal moment of all the extermal forces acting

on the rocket (and therefore on the system 3 ) at the instant of
time +.

Tt is noted that A" =A,'. For, in passing to another system
of coordinate axes moving translationally relative to the first, there
is added to the velocities of all points of the system the same
veloclty constant in magnitude and direction. The additional
momentums will be proportional to the masses and are in the same
directions., Hence, they reduce to a single equivalent resultant
vector applied to the center of inmertia Cj. The moment of this
additional momentum vector relative to C, . will be equal to zero.
Further

Aci' =Ac' + C,C + K'

whence

dh,y'  ah,' .0 — sk’ en!
L T 1 ' dK _ "¢
it = + X K +ClCXa-.E— at

at at (1.7)

becauss at the instant + +the point Cy coincides with the
point C and

dClc
—_— = Va = V¥ = -
Tdt c cl

X

Bl

By noting that at the Instant t the points C; and C
coincide and therefore Gy = G, and recalling that A" = Agy'
there is obtained from equatiﬁﬁg (1.6) and (1.7)

d

c
T = Cc (1.8)

Agein the motion of each particle of the system Z shall be
‘considered as compounded. The motion of the particle relative to the
axes moving forward together with the point C shall be considered
as absolute, the motion of the body S relative to these axes as the
transport motion, and finally the motion of the particle relative to
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the body S (that is, relative to the body of the rocket) as relative.
Then

g‘z'f Zr?(mva
—d{—- = Z'rxmwa

where r 1s the radius vector of the particle drawn from the point C.
The sum W, + Wg + J 1s substituted instead of the absolute accel-
eration of the particle and it is noted Fhat
aL
c
r X ow
Z e at

- 2} X mj

wnere Hc is the principal moment of the Coriolis forces. There is
obtained

(1.9)

He

aA, ' L'

=g ot F Xy (1.10)

Again let vy, be the relative velocity of the particle at the
instant t7 = t + dt. Then Vi, - vy = Wy, At and therefore

ZI‘ X IHWrd.'b = ZI‘ X mVyy ~ ZI' X V. (l.ll)
It is noted that

Zr X mv, =AT (1.12)

where A Y is the kinetic moment of the gas within the rocket in the
relative motion8 at the instant t. The value of this kinetic
moment of the gas at the instant of time %3 is denoted

by Alcr' FPurther

%xmvlr= Zrlxmvlr- Z(rl-’r)XVlr

8see the previous note relative to K¥. The magnitudes Acr
like k¥ refers not to the fixed mass but to a fixed volume
occupied by the gas.
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where T, is the radius vector at the instant ﬁl of the particle,
which at the instant + had the radius vector »r.

From the sum 'Zri 4 mv]_r"’. those components in which the end
of the radius vector r; extends beyond the limits of the rocket are
taken out. The sum of these components will be equal to the kinetic
moment per second of the gas through the exit section of the nozzle
In the relative motion lpe multiplied by dt.

The sum of the remaining components gives Alcr

Further the sum Z'(rl - r) X mvy,, = O, because
Ty -r=0r = v, dt and with an acocuracy up to infinites-
imals vy, < vy.. Thus

= I
E} X mvy., = A1c+'1rc (1.13)
From equations (1.11), (1.12), and (1.13),
SAx
E% XIW = —C 41 (1.14)
A T re

r r r :
zhzrq 8A = A - A 1s the elementary change relative to the
ody.

By substituting in equation (1.10) in place of the sum its
expression from equation (1.14), there is obtained

A ' ar ' BA r (1.15
———-c = ¢ + zrc - HC + —C_ )
dr at at

The kinetic moment of the gas per second in the relative motion
l,c has the dimensions of the ‘moment of a force. The moment Iy

is called the reactive moment? From equations (1.8) and (1.15), there
is obtalned

!
dLe - B8Ar
¢ dt

(1.16)

s/

Equation (1.16) determines the derivative with respect to time
of the kinetic moment of the solidified rocket S 1in its motion

9In the reactive moment, there are often included additional
moments of certain external forces. See section 2.
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relative to axes passling through the center of lnertia C of the
forward moving body S.

2. REACTIVE FORCES

The area of the exit section of the nozzle is divided into
elementary areas d¢O. The mass per second flowing through the
area 40 1s denoted by vdg and the relative velocity of the
ge.s passing through this area by Ve The mass of gas per second
passing through the exit section of the nozzle will then
be p =_2ﬁd@5 where the summation is taken over all the
elements dg of the exit section.

The vector - VWdOv,, having the dimensions of a force, are
consldered. This force is called the elementary reactive force.
It originates in the particles of the gas separating from the
rocket through the area do. The principal vector of the elemen-
tary reactive forces is equal %o - kn, and the principal moment
relative to the pole C 1is equal to - Ipc where k,, and 1.,
are the momentums per second and kinetic moment of the gas relative
to the hody of the rocket.

In the system of reactive forces there are, however, often
included certain external forces, namely, those arising from the
atmospheric pressure on the body of the rocket and from the pressure
of the lssulng parts of the gas on those remaining in the rocket,
and additional forces due to the unsteady motion of the gas., This
phenomencn 1s made clear by the following considerations.

The combustion in the rocket apparatus is assumed to be at
standard conditions with the rocket immovably fixed. In this case

Q=O Hc=-o

Lyt =0 F = Fy + F*
J=0 G, = Gox + Go*

where F* and G*c ere the principal vector and the principal
moment of the forces of the atmospheric pressure and pressure of the
external part of the gas on the exit section of the nozzle,
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From equations (1.5) and (1.6), then'©

8K

-F*=—kr+F* Tt—-
sA T

- = - * - S
G*G lrc + Gc 5

In measurements on the test stand there are generally deter-
mined the pressure forces of the rocket on the supports. These
pressures are characterized by the principal vector -~F and the
principal moment -Gy,, Wwhich include in addition to the purely

reactive forces the additional forces and moments F¥, Gb*’
-5KF /at, -8A¥./dt.

In the following discussion into one system shall be com-
bined: (1) the purely reactive forces, (2) the forces arising
from the atmospheric pressurell and the pressure of the external
part of the gas (issuing from the rocket Jet), and (3) the addi-
tional forces due to the nonsteadiness of the motlon of the gas
in the rocket. All these forces will be included in the system
of reactive forces. The principal vector of these forces -Fy
is denoted by T and the principal moment -Gxe by Me. Then

I
T="kr+F*-%
SAT (2.1)
" C
Mc=-zrc+Gc*-—dt—-

Gensrally in computing the reactive force T and the reactive
moment M_ ‘the third components in equations (2.1), that is,

c
BK¥/at and AT /it are neglected.l?

lOIt is here agsumed that the flow of the gas in the chamber and

nozzle for the moving and stationary rocket is the same. This
agsumption is equivalent to neglecting the effect of the acceleration
of the rocket on the relative motion of the gas,

1lBy the forces of the atmospheric pressure is meant the forces
due to constant atmospheric pressure on the external surface of the
rocket at standard conditions.

12mpat is, the motion of the gas in the rocket 1s considered as
quasi-gtationary.
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3, FINAL FORMULATION OF THE FUNDAMENTAL THEOREMS. FPRINCIPLE OF
SOLIDIFICATION "

From the number of external forces were separated the forces
ariging from the uniform atmospheric pressure and the pressure of
the extermal gas, which were included (section 2) in the system of
reactlve forces., These forces have the principal vector F* and
the principal moment G.¥. The principal vector and the principal
moment of the remaining extermal forces are now denoted by F

and G.

With this notation, the equation of the change of momentum (1.5)
and the equation of the kinetic moment for the solidified rocket (1.16)

agsume the form
aq _ K"
it T rF -k o+ d -8
at ! AT

By introducing these equations the reactive force T and the
moment M, according to equations (2.1), there is finally obtained

aQ _
T = F+T+d

ar ¢ (3.1)

[¢
—'a_b——G-c+MC+HC

From these equations the following principle of solidification is
obtained:

The equations of motion of a rocket at an arbitrary instent of
time + may be written in the form of the equations of motion of
a solid body of constant mass if 1t is assumed that the rocket became
rigid and solidified at the instant of time +t (that is, ceased to
give out particles) and that to the fictitious solid body thus
obtained there were applied: (1) external forces acting on the

rocket, (2) reactive forces, and (3) Coriolis forces.
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4, SECOND DERIVATION OF -THE EQUATTON OF MOMENTUM AND THE EQUATION
OF MOMENTS

An infinitely small interval of time 4t 1is considered and the
elementary increments, for thils interval, of dK and dQ the momen-
tum of the system ¥, and the =0lid body S are compered.

. . For this purpose, the volume occupled by the rocket is
divided into three parts: (1) the volume occupied by the body,
. (2) the volume occupled at the instant + by the powder (or liguid)
fuel, and (3) the volume occupled at the instant + by the particles
of gas in the rocket. The parts of the momentum referring to these
volumes are denoted by the subscripts 1, 2, and 3, respectively.

Evidently for the body,

d) = dQ | (4.1)

The powder is next considered. At the instant %, Ké = Qz;
but at the instant 1 = t + dt the vector K, differs fram Qp

by the momentum of the elementary mass of powder that burmed in the
time interval dt., This deficlency of momentum is presented in the

form k dt where k_ is the momentum expenditure per second of
the powder. Thenld

.dKé = 49, - kdt (4.2)

The volume of the part of the rocket occupied at the ingtant +
by the gas is now considered. The momentum of the particles of gas

13The momentum of the gas occupylng at the inastant tl the volume
of burmed powder after dt seconds is not considered here. The
ratio of this momentum to the value dt 1s equal to the ratio of
the density of the gas to the density of the powder and 1s very small,
Thus by ,» ‘the expenditure per second of the momentum of the powder
multiplied by 1 - ¢ 1s known, For the rocket with liguid
fuel @K, = dQ, - kdt + K, where Kbr 1s the momentum of the

liquid fuel relative to the motion and kr ‘the consumption

ver second of the momentum of the fuel in"the transport motion mul-
tiplied by 1 -~ €, where € 1is the ratio of the density of the
fuel vapors to the density of the fuel itgelf.
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in this volume relative to the body of the rocket is denoted (as in
section 1) by K¥. The corresponding increment is dK¥, where the
differential 4 takes account of the vector relative to the sta-
tlonary system of coordinates. But then

aKF = 6K +w X K at

where OBKF is the elementary change of the vector KXY relative to
the body of the rocket and @ 1s the angular velocity of the body.

The increment of momentum of the gas in the volume considered
in the transport motion is now considered, This increment agrees
with dQz in the case where at each point -of the volume considered
the density of the gas p at the Instants t and +t; is the sawe,
In the general case, however, 1t 1s necessary to take Iinto account
also the change in density p. Hence, in the general case the
required increment in the transport motion is equal to

4Q, +&% %% at vedr

where the integral is extended over that part of the volume W that

at the instant % 1is occupied by the gas, v, is the transport

velocity of the element of volume dT, and JOp/Ot is the rate of
change of the density p 1in the given volume element dT. Hence

aK, = dag + -g-% AtvedT + BKT + @ X KX dt (4.3)

The increments In the momentum of the particles within the
volume of the rocket have been considered. In computing dX,
however, it is necessary to take into account also the moment at the
time %, of those particles, which in the interval from %

‘%o %3 =t + dt passed through the exit section of the nozzle.
This momentum is equal to (k, + k,.)dt where k, is the rate of

expenditure per second of the momentum of the gas through the exit
section of the nozzle in the transport motion and kr in the
relative motion. Thus

dK = 8Ky + dK, + dK; + (kg + k,)dt
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Substituting 4K , dK,, and dK, from equations (4.1), (4.2)
and (4 3), respectively, there is obtained

dQ-(kp—k kr)dt+6Kr+wardt+%§ —-E-d.tv ar (4.4)

As Dbefore, the principal vector of the forces of the atmospheric
preasure and the pressure of the external part of the gas on the
rocket is denoted by IF* and the principal vector of the remaining
external forces by F. According to the momentum theorem for the
system I , dK/dt = F + F* and therefore from equation (4.4)
there 1s obtained 14

.g:_%=F..kr F*_B_Yr_ && -—-v aT - X K (4.5)

where the last term - X KX represents half the Coriolis force J.
Hence, by taking equations (2.1) into account,equation (4.5) can be
reduced to the form

9Q_pFpi74k - Bp v_ 4T+ = l 4,6
dt P e d ( )

Similar considerations permit obtaining the equation of moments
dL!

C r ap
_E%,"=GC+MC+ZCP' -0 xXA; - r'xve'—a—t-d'r (4.7)

where Zcp is the kinetic moment of the powder per second and Zce

ig the kinetic moment of the gas per second through the exit section
of the nozzle. In both cases, there is considered the kinetic moment
in the transport motion of the body relative to a system of axes
moving forward together with the center of inertia C of the body S.

ldmnig equation holds also for the liquid fuel rocket. In this

case, however, K'Y 1s the momentum of the gas and the fuel in their
relative motion,
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5. EQUATION FOR THE MOMENTUM, CORIOLIS FORCE, AND CORIOLIS MOMENT

By comparing equations (4.8) and (4.7) with equations (3.1),
the equations Tfor the Coriolis force J and the Coriolis moment Hc

are obtained:
Jd =2 k -k =~ §E v aT (5.1)
P e 9t © .

_ T ] - r _ _a_Rv t (5,2
By = lgp' = Vo= ®0 X A S& 2 2! X v, ar (5.2)

These equations are evidently simplified if the density of the gas
does not vary with time, that is, OJp/ot = 0. (This equation holds for
the quasi-stationary motion of the gas in the rocket.)

The expressions (S5.1) for J are first considered. The mass of
powder expended per second (or what amounts to the same thing, the
addition of the mass of gas) is denoted by by and the mass of gas

per second through the exit section of the nozzle by Ho. Then
evidently

a Jols
- = e— d.T= _d-T 5.3
By = Mo T EE e Ot (5.3)
Further, k _dt represents the momentum of an elementary mass
of powder wqdt burning in the interval of time dt. The center of
inertia of this elementary mass of powder is denoted by Cp and
the velocity of the point CP in the transport motion of the body
by Vepe Then kp = ulvcp'

If it is assumed that the elementary mass of powder uldt is
symmetrically placed relative to the axis of the rocket, the point
C will lie on this axis, If the mass pldt is symmetrical with

respect to the mean section of the powder containers, C_ will be in
the plane of this section. P

In the same manner, the elementary mass of gas uzdt passing

through the exit section of the mnozzle in time dt is considered.
By Ce the center of inertia of this elementary mass is denoted and

by Vge the transport velocity of this center. Then ke = PoVige
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If the gas passing through the exit section is symmetrical, the
point Ce lies on the center of the exit section of the nozzle.

By Tp and r, the radii vectors of the points Cp and Ce ’
respectlvely, drawn from any pole 0O fixed to the body are denoted.

: Let »r denote the radius vector of an arbitrary point within
the rocket. By using the expression for the veloclties of the points
of a solid body,

vcp=\ro+m><rp

Voo = Vg +W X g (5.4)

ve=v0+(er

On the basis of these equations and the equations kp = Wy Vep
and kg = U Vees equation (5.1), taking account of equation (5.3),

- aggumes the form

dp
Jd = - 20X (pzre - p.lI‘p + St r 4T (5.5)

By comparing this equation with the usual expression for the
Coriolis force J = - 2w X K* and taking into account the arbi-
trariness of the vector ®, +there results

d
K = Holg - P-lrp + 5% r dt (5.6)

where KXY is the momentum of the gas in the rocket in its motion
relative to the rocket and the integral on the right side is
extended over the entire volume W occupied by the gas.

Equation (5.6) is of a general character.15 It determines the
momentum of the gas (or liguid) enclosed in the given volume in the

15Equations (5.6) and (5.2) for XK* and He can be obtained
directly if the derivatives are computed with respect to time of the
integrals
rdm rX (WX r)dm

taken over the mass occupying the given volume at the time +t.




16 | NACA TM 1255

cage where the incoming and outgoing masses p, and uo -of the gas
through the surface bounding this volume and tﬁe per second change in
density at each point of the volume are given. In this equation, rp
is the radius vector of the center of inertia of the incoming mass per
second Wi and Iy the radius vector of the outgoing mass Hoo.

The particular case where Bp/Bt % 0 (for example the quasi-
stationary motion of a gas, the arbiltrary motion of an incompressible
liquidls, and so forth) is considered. In this case according to equa-
tion (5.3), there is pj; = pup = p where for the case of the rocket

p = dm/dt. If the vector b = CeCp is introduced, equation (5.6)
and the equation for J Dbecome

K = ub J=-20 XK =-2u @ XDb) (5.7)

Equation (5.2) for the Coriolis moment H, is now considered.
If it is assuméd that Bp/Bt = 0 and that the equivalent vector of
the momentum of the particles of gas in their relative motion passes
through the center of inertia C, +that is, ‘Acr = 0, equation (5.2)
becomes .

Hc = Z'Pc = z'ec

For example, the case of plane-parallel motion of the rocket is
considered., The moment of inertia of the body relative to the equa-
torial axis passing through the point C and perpendicular to the
plane of the motion is denoted by I. The moment of inertia of the
mass of powder burned in dt seconds will then be equal to -dI,
Hence the kinetic moment of this mass will be

' = -
l e at = wdTx

On the other hand, the kinetic moment (in the translational
motion) of an elementary mass of the_gas passing through the exit
section in time dt will be -dm r “@ where r, = TCg. Thus

= f.& 4 dm ., 2
He (dt dte>‘°

18 In this case there is the exact equation.
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6. EQUATION OF MOTION OF THE CENTER OF INERTIA OF THE ROCKET

From the principle of solidification for the instant of time 1,
there results

mw,

s =F+T+J (6.2)

vhere m 1is the mess of the rocket at instant + and w, 1is the

acceleration of the center of inertia C of the solidified rocket
at time +t, +that is, of the body S.

During the combustion of the fuel, however, the center of
inertia of the rocket is displaced relative to the body. The motion
of the center of inertia of the rocket relative to the initial
(fixed) system of coordinates can be represented in the form of a
compound motion in which the center of Inertia moves relative to the
body (relative motion) and the body of the rocket moves relative to
the fixed system of axes (transport motion). Then v, and w¢
are the transport velocity and acceleration and v,,. and wgy, the
relative values., The absolute velocity and the acceleration of the
center of Ilnertia are determined from the egquations

v=vG+VCr
w=wc+wcr+2&)xvCr

Determining from the second equation w, and substitutiﬁg in
equation (6.1), there is obtained the equation of motion of the center
of inertia of the rocket.

mw = F + T +J + W, + 200 X Vep (6.2)

The expressions for the magnitudes vy, and wg,e shall be
found, The body of the rocket may here be congidered as Tfixed. Let
the point O of the body of the rocket be taken as the initial
and C and C' +the position of the center of inertla of the rocket

at the instant t and +' =t + dt. Then for the moments of the
times + and %', there results

mr, = p (£) r aT

(m + dm) r,' = p (t +dt) rarT
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where rg =0C, Xgr =0C' =X, +0dr;, eand p is the density of the
elementary volume of the rocket. The integration is extended over
the entire volume of the rocket (including the body).

By subtracting the first relation from the second and neglecting
the terms of the second-order smallness,

- - S
dm r, + m 3ry = = Hq ry + - dt r 4T
whence it follows that
SI‘C ap
OVop = 0 —gf = M2 rs - By rp + S; r 4T

or on the basis of equation (5.6)
mVep = tp (rg = Tg) + K* (6.3)

By differentiating the equation (6.3),

r
- ES --—2- (r - T ) + 5K
- p,zvcr + mwcr = HoVip St c e 4t
or
r
2 3K :
Doy = 2HaVer + St (rg - re) + &t (6.4)

In the quasi-stationary case Op/ot z'o, Ho = Hy = I,
8KY/dt ® 0, Ou,/0t ® 0, and equations (6.3) and (6.4) assume the
form

. - =K
Vop = % (rg o) E e

T<C
b

It
RV BN

2

8

The computations conducted by these equations show that the mag-

nitudes Vor and W, are negligibly small in comparison with the

mean velocities and the accelerations on the active part of the
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trajectory. Hence in equation (6.2), the term mv,,, may be neglected
in comparison with the reactive thrust T. The term 2,0 X Vi, is

generally of the same order as J because |[r, - Ty, is of the sane
order as Ire - rp,l,

7. EQUATIONS OF THE ROTATIONAL MOTION OF THE ROCKET

By &, n, and 0 are denoted principal central axes of
inertia of the rocket, by I, Iz, and I3 the moments of
inertia of the rocket relative to these axes, by p, q, and r
the projections of the angular velocity of the body w on these
axes.

It is first asgumed that the directions of the axes of iner-
tia €, 7, and { are fixed relative to the body during the
entire time of combustion. This natural assumption is always made
for rockets because it is assumed that at all times the axls of the
rocket is one of the principal axes of inertia and the two other
principal axes of inertia may be arbitrarily chosen in the plane
perpendicular to the axis of the rocket.

Under the assumption made, the principal axes of inertia of the
solidified rocket, that is,of the body S, will at all times be
parallel to the axes £, 1, and {. The corresponding moments of
inertia for the body S will have constant values equal to the
values of the moments of inertia I, I, and Iz of the rocket
at the instant of time +%. It follows that p, q, and r are the
projections of the angular velocities of the solid body S on the
principal central axes of inertia of this body. Hence, making use
of the principle of solidiflcation, the three equations of the rota-
tional motion can be written in the form of Eulerl?

Il%‘;.E_F(IS"IZ) qr:NE (E: Tl,.f.;l, 2, 3; Dy, 4, r)

(7.1)

17Here and in the following discussion, the parentheses after
each equation indicate that two other equations are obtained by
cyclical interchange of the letters and subscripts in the paren-
theses.
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_where N, is the sum of the moments relative to the axis ¢ of all

the externmal reactive and Coriolls forces and similarly for NTl
_an.d. NL N

The three equations (7.l) together with the three scalar equa-
tions of motion of the center of inertia constitute a system of six
equations, which determines the motion of the rocket.

For completeness, the general case when the principal central
axes of inertia change their directions relative to the body of the
rocket shall be considered.

By &', 7', and L' the directions of the principal axes
of inertia of the body S 1is denoted, that is, the directions fixed
relative to the body and coinciding with the directions £, 1,
and § at the time +%. The projections of the angular velocity ®
on the axes &', 7', and ' are denoted by p', gq', and r!
respectively. Applying the principle of solidification, for the
moment of tTime

d_l
:Llag—+(15-12)q'r'=1\rE (¢, n, 85 1, 2,35 p, a, 7)
(7.2)

where Nﬁ' is the sum of the projection of the extermal reactive

and Coriolis forces on the axis £', and so forth. By £ the
angular velocity of the trihedron §q§ relative to the body of
the rocket is denoted., ILet an/dt be the derivative of the vector
relative to the body of the rocket and dw/dt the derivative
relative to the axes fnf . Then

dw oW

L2 xo (7.3)

The proJections of the vector dw/dt on the axes ¢°, n',

and §' are equal to dp'/dt, dq'/dt, and dr'/dt. The pro-
Jections of the vector ®w/dt on the axes ¢, 1, and { are
equal to dp/dt, dq/dt, and dr/dt. Because at the instant 4
the directions ¢£', n', and {' coincide with the directions
n, and ¢ for this instant of time, from equation (7.3)

%.E_'=%%+Qnr-ﬂgq (i,ﬂ: .t»;P_JQ.)r)

(7.4)
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It is noted that p' =p, q' =g, and r' =1r at the
instant +t. Substituting in equation (7.2) in place of dp!/dt,
dq'/dt,” and dr'/dt their expressions from equation (7.4)

3} | Ii g‘% +-(13 - Ig) qi; + I (Q]r - Q;q_) = Ng (7 5)

¢, n,¢ 1,2, 35 p, q, T)

where Qg¢, , and §2; must be considered as known functions
of the tifme.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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